Jin-Hong Kim

Associate Professor Seoul National University, Department of Biological Sciences Seoul, Korea, 08826 Email: jinhkim@snu.ac.kr; Tel: 02-880-4177

EDUCATION

2005-2010	CALIFORNIA INSTITUTE OF TECHNOLOGY Division of Engineering and Applied Science Ph.D. in Bioengineering	
2001-2005	UNIVERSITY OF MINNESOTA	

Graduation with *Summa Cum Laude* and High Distinction **PROFESSIONAL EXPERINECES**

2014.09-present SEOUL NATIONAL UNIVERSITY Department of Biological Sciences Assistant, Associate Professor 2018.03-present **INSTITUTE FOR BASIC SCIENCE** Center for RNA research Team Leader (RNA therapeutics) **GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY** 2010.11-2014.08 Cell Dynamics Research Center, School of Life Sciences Research Professor (in lieu of military service) 2010.05-2010.10 **CALIFORNIA INSTITUTE OF TECHNOLOGY** Division of Chemistry and Chemical Engineering Postdoctoral Scholar

Bachelor of Science in Biomedical Engineering

RESEARCH INTERESTS

The pathogenesis of connective tissue diseases, RNA therapies, and synthetic biology

SELECTED PUBLICATIONS

Roh K*, Noh J*, Kim Y, Jang Y, J Kim, Choi H, Lee Y, Ji M, Kang D, Kim MS, Paik MJ, Chung J, **Kim JH**[#] and Kang C[#] Lysosomal control of senescence and inflammation through cholesterol partitioning *Nature Metabolism*, **2023**

Kang D*, Lee J*, Jung J, Carlson BA, Chang MJ, Chang CB, Kang SB, Lee BC, Gladyshev VN, Hatfield DL, Lee BJ[#], and **Kim JH**[#] Selenophosphate synthetase 1 deficiency exacerbates osteoarthritis by dysregulating redox homeostasis *Nature Communications*, **2022**

Cho Y*, Kim HS*, Kang D, Kim H, Lee N, Yun J, Kim YJ, Lee KM, Kim J, Kim HR, Hwang YI, Jo CH, and **Kim JH**[#]. CTRP3 exacerbates tendinopathy by dysregulating tendon stem cell differentiation and altering extracellular matrix composition.

Science Advances, 2021

Kim H*, Cho Y*, Kim HS, Cheon D, Kim YJ, Chang MJ, Lee KM, Chang CB, Kang SB, Kang HG and **Kim JH**[#] A systemlevel approach identifies HIF-2α as a critical regulator of chondrosarcoma progression. *Nature Communications*, **2020**

Kim S*, Han S*, Kim Y, Kim HS, Gu YR, Kang D, Cho Y, Kim H, Lee J, Seo Y, Chang MJ, Chang CB, Kang SB, and **Kim JH**[#] Tankyrase inhibition preserves osteoarthritic cartilage by coordinating cartilage matrix anabolism via effects on SOX9 PARylation. *Nature Communications*, **2019**

Kang D*, Shin J*, Cho Y, Kim HS, Gu YR, Kim H, You KT, Chang MJ, Chang CB, Kang SB, Kim JS, Kim VN, and

Kim JH[#] Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. *Science Translational Medicine*, **2019**

Won Y, Shin Y, CH Chun, Cho Y, Ha C, **Kim JH**[#], and Chun JS[#] Pleiotropic roles of metallothioneins as regulators of chondrocyte apoptosis and catabolic and anabolic pathways during osteoarthritis pathogenesis *Annals of the Rheumatic Diseases*, **2016**

Lee M, Won Y, Shin Y, **Kim JH**[#], and Chun JS[#] Reciprocal activation of hypoxia-inducible factor (HIF)-2α and the zinc-ZIP8-MTF1 axis amplifies catabolic signaling in osteoarthritis. *Osteoarthritis and Cartilage*, **2015**

REVIEW PAPERS

Cho Y*, Jeong S*, Kim H, Kang D, Lee J, Kang SB[#], and **Kim JH[#]** Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. *Experimental & Molecular Medicine*, **2021**

Kang D*, Lee J*, Wu C, Guo X, Lee BJ, Chun JS, and **Kim JH**[#] The role of selenium metabolism and selenoproteins in cartilage homeostasis and arthropathies. *Experimental & Molecular Medicine*, **2020**

Kim H, Kang D, Cho Y, and **Kim JH**[#] Epigenetic regulation of chondrocyte catabolism and anabolism in osteoarthritis. *Molecules and Cells*, **2015**